Beyond Spike Timing Theory – Thermodynamics of Neuronal Computation
نویسندگان
چکیده
This paper highlights ionic fluxes as information carriers in neurons. The theoretical framework regarding information transfer is presented as changes in the thermodynamic entropy that underlie specific computations determined by ionic flow. The removal or accumulation of information is analysed in terms of ionic mass transfer related with changes in Shannon information entropy. Specifically, information transfer occurs during an action potential (AP) via the voltage gated ion channels in membranes and the same physical mechanism can be extended to various types of synapses. Since sequential APs from a selected neuron are not alike, then every spike may transfer slightly different amounts of information during their occurrence. The average efficiency in information transfer during APs is estimated using mutual information measures and Hodgkin-Huxley model. This general scheme of ions as carriers of information represents the required physical machinery for a dynamic information transfer that is missing in the current spiketiming description.
منابع مشابه
NpgRJ_Nn_1643 420..428
The timing of action potentials in sensory neurons contains substantial information about the eliciting stimuli. Although the computational advantages of spike timing–based neuronal codes have long been recognized, it is unclear whether, and if so how, neurons can learn to read out such representations. We propose a new, biologically plausible supervised synaptic learning rule that enables neur...
متن کاملSpike Timing-Dependent Plasticity of Neural Circuits
Recent findings of spike timing-dependent plasticity (STDP) have stimulated much interest among experimentalists and theorists. Beyond the traditional correlation-based Hebbian plasticity, STDP opens up new avenues for understanding information coding and circuit plasticity that depend on the precise timing of neuronal spikes. Here we summarize experimental characterization of STDP at various s...
متن کاملEffects of Firing Variability on Network Structures with Spike-Timing-Dependent Plasticity
Synaptic plasticity is believed to be the biological substrate underlying learning and memory. One of the most widespread forms of synaptic plasticity, spike-timing-dependent plasticity (STDP), uses the spike timing information of presynaptic and postsynaptic neurons to induce synaptic potentiation or depression. An open question is how STDP organizes the connectivity patterns in neuronal circu...
متن کاملCorrelations Without Synchrony
Peaks in spike train correlograms are usually taken as indicative of spike timing synchronization between neurons. Strictly speaking, however, a peak merely indicates that the two spike trains were not independent. Two biologically plausible ways of departing from independence that are capable of generating peaks very similar to spike timing peaks are described here: covariations over trials in...
متن کاملReducing the Variability of Neural Responses: A Computational Theory of Spike-Timing-Dependent Plasticity
Experimental studies have observed synaptic potentiation when a presynaptic neuron fires shortly before a postsynaptic neuron and synaptic depression when the presynaptic neuron fires shortly after. The dependence of synaptic modulation on the precise timing of the two action potentials is known as spike-timing dependent plasticity (STDP). We derive STDP from a simple computational principle: s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007